Seminare 2017

Auch 2017 fanden wieder zwei Seminare für die Preisträger des Landeswettbewerbs Mathematik
statt.

Problemlösestrategien
Leitung:  Clemens Hauser
              Torsten Rupf    
Weil der Stadt           15. Mai  - 18. Mai 2017

          Seminar Weil

Einen Bericht über das Seminar findet man hier  .

Zahlentheorie
Leitung: Brigitte Liebelt
             Torsten Tok
Hechingen    21. Mai - 24. Mai 2017

Einen Bericht über das Seminar findet  man hier .




Juniorstarterseminare
Auch dieses Jahr finden wieder zwei Juniorstarterseminare statt.

Heidelberg      4./5.   Oktober 2017
Bruchsal       13./14. Oktober 2017


Allgemeines zu den Seminaren

Zielsetzung
Mit den mathematischen Seminaren verfolgen wir drei Ziele:

          am Rande der Schulmathematik

          gelagerten Interessen

          und mit Grenzbereichen der Mathematik durch Vorträge

Mathematische Inhalte und Arbeitsweise
Die Themen werden so gewählt, dass die erforderlichen Vorkenntnisse aus der Schulmathematik
möglichst gering sind. Zusätzlich werden die Arbeitsmaterialien so aufgebaut, dass anfängliche
Unterschiede rasch aufgefangen  werden.

Einige der Themen waren:
Problemlösestrategien (vollständige Induktion, Schubfachprinzip, Extremalprinzip, Invarianzprinzip,
Ungleichungen)
Zahlentheorie (Rechnen mit Kongruenzen, Satz von Fermat, Eulersche phi-Funktion, Diophantische
Gleichungen, Verschlüsselung)
Geometrie (Randwinkelsatz mit seinem Umfeld, Goldener Schnitt, Abbildungen und Ornamente,
Flächensätze, Inversion am Kreis)
Wahrscheinlichkeitsrechnung
Topologie (Graphen, Knoten)
Logik

Das charakteristische Merkmal der Seminarwochen liegt aber nicht im mathematischen Inhalt,
sondern in der Arbeitsweise. Begünstigt durch einen großzügigen Zeitrahmen und losgelöst vom
45-Minutentakt des Unterrichts versuchen wir, die Schüler selbst schöpferisch tätig werden zu
lassen. Dieses Ziel ist ein wesentliches Kriterium bei der Wahl des Themas.

Bei der Abfassung der Arbeitsblätter geben wir deshalb außer den Übungsaufgaben zur Vertiefung
der neuen Inhalte auch offene Fragestellungen (Forschungsaufträge) vor. Diese Strategie gestattet
es, die unterschiedlichen Arbeitsgeschwindigkeiten auszugleichen. Außerdem ermuntern wir die
Seminarteilnehmer, die Problemstellungen gegebenenfalls arbeitsteilig in kleinen Gruppen zu behan-
deln und selbständig zu vertiefen. Das zentrale Ziel besteht nicht in der Vermehrung von reprodu-
zierbaren Wissen, sondern in der Aneignung von Wegen, Wissen zu erwerben.

Jede Arbeitsphase umfasst einen Zeitraum von ca. drei Zeitstunden. In einer kurzen Einführung von
20 bis 30 Minuten werden die Schüler auf die Problemstellung vorbereitet und ziehen sich dann für
etwa 1½ Stunden in Einzel - und Gruppenarbeit zurück. Jede Seminarwoche enthält in der Regel
fünf solcher Arbeitsphasen. Während dieser Arbeitsphasen stehen die betreuenden Lehrer für die
Beantwortung von Fragen bereit. Sie werden dabei von zwei älteren Schülern bzw. Studenten
unterstützt. Diese Tutorentätigkeit wird von (ehemaligen) Teilnehmern der Seminare sehr gerne
übernommen. Nach jeder Arbeitsphase werden die Ergebnisse im Plenum diskutiert. Dadurch wird
sichergestellt, dass alle Teilnehmer die erforderlichen Vorkenntnisse für die weitere Arbeit haben.

Durch diese Arbeitsweise bedingt, ist der Ablauf der Seminarwoche nicht perfekt planbar. Man
muss auf Überraschungen inhaltlicher und didaktischer Art gefasst sein. Dass sich die einzelnen
Gruppen während dieser Phase sehr unterschiedlich entwickeln, nehmen wir in Kauf. Trotz der
Risiken möchten wir im Grundsatz an dieser Arbeitsweise festhalten. Sie erweitert und verändert
für viele Teilnehmer das Bild, das sie zuvor von der Mathematik hatten. Die gemeinsame Arbeit
an einer mathematischen Problemstellung ist für die Schüler eine neue, beeindruckende Erfahrung.
Gleiche Erfahrungen bei den Seminaren für die Preisträger am Bundeswettbewerb zeigen, dass
solche Veranstaltungen auch für bereits erfolgreiche, mathematisch begabte Schüler sinnvoll sind.


  
Bild
Bild
Bild

Umfeld und Rahmenprogramm
Die Seminare führen wir in Bildungshäusern meist kirchlicher Träger in verschiedenen Regionen
Baden-Württembergs durch. Die Kosten für Unterkunft und Verpflegung werden vom Kultus-
ministerium und vom Förderverein übernommen, so dass für die Schüler nur die Fahrtkosten
und das Taschengeld anfallen.

Neben der Mathematik kommt auch das gesellige Beisammensein sowie sportliche und musika-
lische Unternehmungen nicht zu kurz. Diese Unternehmungen fördern den Kontakt zwischen den
Teilnehmern und sind somit wichtige Bestandteile der Seminartage. Sie unterstützen ebenso
das wechselseitige Kennenlernen wie Schülerreferate über ihre mathematischen Arbeiten oder
ausgefallene Hobbys. Die Bandbreite dieser Schülerreferate reichte z. B. bei einer der zurück-
liegenden Veranstaltungen von einer Einführung in das GO-Spiel, über Schach, bis zu Zwei -
und Dreiecken auf der Kugeloberfläche, Verschlüsselungsmethoden und Origami. Die Teilneh-
mer werden stets auch gebeten, Musikinstrumente bzw. Noten fürs Klavier mitzubringen, was
bei dem angesprochenen Seminar dazu führte, dass am Abschlussabend Klarinette, Flöte,
Geige, Trompete und mehrfach Klavier zur Unterhaltung beitrugen.

Während der Seminartage wird der Bedarf nach einem Gedankenaustausch mit gleichgesinnten
und ähnlich begabten Jugendlichen spürbar. Die Erfahrung, dass sie nicht trotz, sondern wegen
ihrer mathematischen Interessen von Gleichaltrigen als Gesprächspartner angenommen werden,
ist für viele Teilnehmer neu. Diese sich bietende Chance wird intensiv genutzt. Sie machen die
Nacht zum Tage, ohne dass dadurch die Belastbarkeit für die Arbeit am vorgegebenen mathe-
matischen Thema leidet. Mehrfach haben sich auch schon Gruppen von Seminarteilnehmern auf
eigene Initiative getroffen oder sind zumindest in Kontakt geblieben.

Neben diesen Aktivitäten der Teilnehmer möchten wir den Jugendlichen bei jedem Seminar durch
einen Vortrag, eine Führung oder eine Fahrt Anregungen aus dem kulturellen Bereich geben, um
damit die vielfältigen Begabungen anzusprechen und die Persönlicheitsbildung zu fördern. In diesem
Rahmenprogramm finden dann auch regionale Besonderheiten Beachtung.

Besuch im Kiepenheuer-Institut auf dem Schauinsland
Führung in und am Freiburger Münster zum Thema Mathematik am Bau
Führung im Kloster Bronnbach und Besucheiner Hammerschmiede
Führung in einer Orgelfabrik in Weikersheim
kunsthistorische Fahrt zu verschiedenen Werken von Matthias Grünwald
Gesprächskreis zum Thema "Der erste Weltkrieg in Presse und Literatur"
Besuch der Kepler-Sternwarte in Weil der Stadt